# LQ search in evjj channel

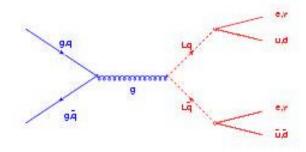


### Simona Rolli (TUFTS)

-Blessing-



### Introduction


- Some beyond the SM models assume additional symmetry between leptons and quarks
- LeptoQuarks transition between leptons and quarks
  - Have both lepton and baryon numbers
  - λ unknown coupling to leptons and quarks



# LQ production at the TeVatron

### Production

- $\bullet$  qg  $\rightarrow$  LQ + LQbar
- $gg \rightarrow LQ + LQbar$
- qqbar → LQ + LQbar

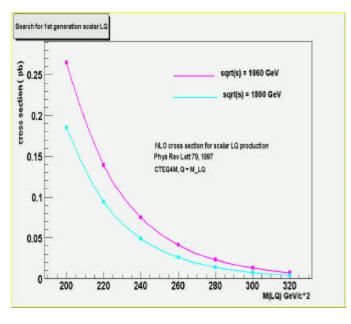


### Decay

- LQLQ  $\rightarrow$  I<sup>+</sup>I<sup>-</sup>qq, I<sup>±</sup>nqq, nnqq  $\beta$  = Br(LQ->eq)
- Experimental signature:
  - High pt isolated leptons (and/or MET) + jets



# LQ production at TeVatron


### Code from Michael Kraemer (Phys.Rev.Lett 79,1997)

| $M_{LQ}$ ( $GeV/c^2$ ) | σ(NLO) [pb] |
|------------------------|-------------|
| $GeV/c^2$ )            | _           |
| 200                    | 0.185E+00   |
| 220                    | 0.094E+00   |
| 240                    | 0.489E-01   |
| 260                    | 0.259E-01   |
| 280                    | 0.138E-01   |
| 300                    | 0.746E-02   |
| 320                    | 0.401E-02   |

| M <sub>LQ</sub> ( | σ(NLO) [pb] |
|-------------------|-------------|
| $GeV/c^2$ )       |             |
| 200               | 0.265E+00   |
| 220               | 0.139E+00   |
| 240               | 0.749E-01   |
| 260               | 0.412E-01   |
| 280               | 0.229E-01   |
| 300               | 0.129E-01   |
| 320               | 0.727E-02   |

$$\sqrt{s} = 1800 \text{ GeV}$$
  
 $Q^2 = M_{LQ}^2$   
CTEQ4M pdf

$$\sqrt{s} = 1960 \text{ GeV}$$
  
 $Q^2 = M_{LQ}^2$   
CTEQ4M pdf



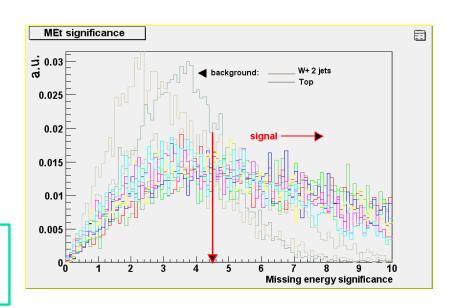


### Previous results from Run I

- **1997** 
  - $m(LQ) > 180 \text{ GeV/c}^2$
  - straightforward strategy
    - cut on transverse mass to get rid of W + 2 jets background
- June 2001
  - $m(LQ) > 182 \text{ GeV/c}^2$ 
    - relative likelihood technique

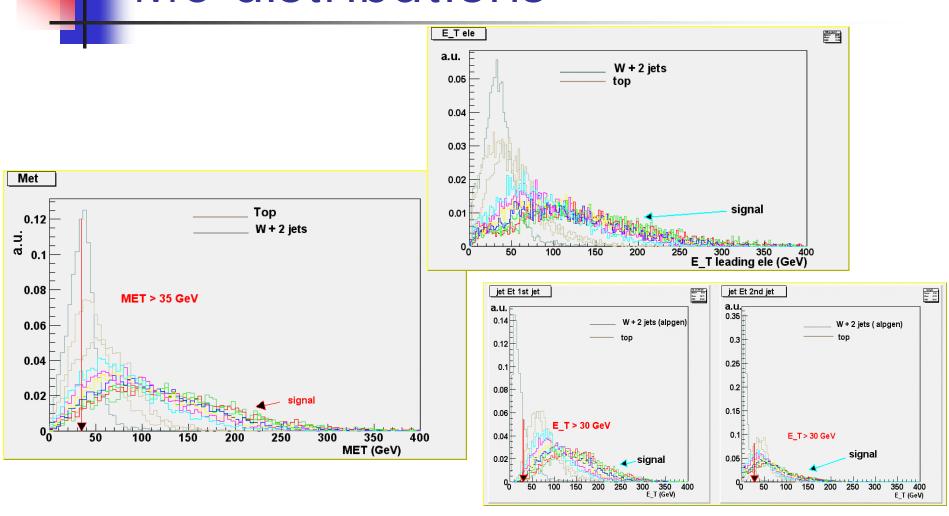


# LQ search in evjj


Signature: 1 electron, 2 jets and large MET

### **Analysis cuts**

- 1central electrons with E<sub>T</sub> > 25 GeV and MET > 35 GeV
- 2 jets with E<sub>T</sub> > 30 GeV
- $\Delta \phi$  (MET-jet) >  $10^{\circ}$
- $E_T(j1) + E_T(j2) > 80 \text{ GeV}$
- $M_T(e-v) > 120$
- Met/ $\sqrt{\Sigma}E_T > 4.5$


#### similar to note 4228, but for metSig cut

Events with 2 central electrons are rejected (to be orthogonal to eejj analysis)





### MC distributions



# Tools

- Signal generated and reprocessed with 4.9.1
  - 5000 events at masses from 160 to 280

Same as eejj

# 4

## Efficiencies & acceptance

$$\varepsilon_{\text{tot}} = \varepsilon_{\text{Acc}}(M) x \ \varepsilon_{\text{ID}} x \ \varepsilon_{\text{zo}} x \ \varepsilon_{\text{trig}}$$

- Trigger
  - Top/EW as in Z` analysis we use 99.1±0.1%
- Efficiencies for electron selection cuts
  - Z' analysis one tight electron efficiency
    - $\epsilon_{T} = 89.6 \pm 0.5$
- Other
  - efficiency on the vertex cut  $(|z_0| < 60 \text{ cm})95.2 \pm 0.1 \text{ (stat)} \pm 0.5 \text{ (sys)}$

# Electron ID (Z' analysis)

- Central electron tight
  - $E_t \ge 25 \text{ GeV}$
  - $p_t > 10 \text{ GeV}$
  - hadem <= 0.055 + 0.00045 \* E</p>
  - E/p < 4 ( for  $E_T < 200 \text{ GeV}$ )
  - iso4e/emet < 0.1 ( 0.2 for second central loose)</li>
  - |DeltaX | < 3.0
  - DeltaZ | < 5.0 cm</li>
  - Fiducial = 1
  - Ishr < 0.2

$$\varepsilon_{\rm T} = 89.6 \pm 0.5\%$$



# Expected signal events

Number of expected events in 72 pb<sup>-1</sup>

| Mass               | n Theory CTEQ4M (pb) | n Theory CTEQ4M (pb) |
|--------------------|----------------------|----------------------|
| $(\text{GeV/c}^2)$ | $Q^2 = M_{LO}^2/4$   | $Q^2 = 4M_{LQ}^2$    |
| 160                | 7.1                  | 6.2                  |
| 180                | 4.8                  | 3.8                  |
| 200                | 2.8                  | 2.3                  |
| 220                | 1.7                  | 1.4                  |
| 240                | 0.99                 | 0.8                  |
| 260                | 0.6                  | 0.5                  |
| 280                | 0.34                 | 0.3                  |



## Background

- tt with both W ->ev  $0.13 \pm 0.02$  events

- pythia
- tt decaying into | + jets 0.026 ± 0.012 events
  - pythia
- W + 2 jets
  - alpgen + PS

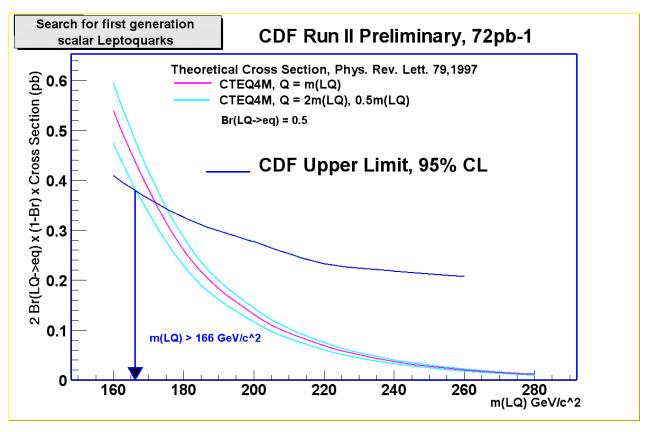
 $1.60 \pm 1.10$ 

Total  $1.73 \pm 1.47$ 



### 2 events survives the analysis cuts:

| Number of events with 1 ele $> 25$ && MET $> 35$                                     |     |
|--------------------------------------------------------------------------------------|-----|
| evt with 1 ele, MET and $\geq$ jets (30 30)                                          | 241 |
| evt with 1 ele, MET and >= 2 jets and dphi cut                                       | 196 |
| evt with 1 ele, MET and >= 2 jets and dphi cut and 2jet_80                           | 156 |
| evt with 1 ele, MET and >= 2 jets and dphi cut and 2jet_80 and T mass cut            | 23  |
| evt with 1 ele, MET and >= 2 jets and dphi cut and 2jet_80 and T mass cut and metsi, | g 2 |




## Systematic uncertainties

- Luminosity: 6%
- Acceptance
  - pdf 4.3% ( from run I )
  - statistical error of MC 2.2%
  - jet energy scale (Level 3) 2.9 0.7 % (absolute uncertainty)
    - jets corrected for energy scale, time dependent and relative response
    - jet energy scaled of systematic uncertainty + 5% (energy scale + 5% data/MC adjustment); 0.08 to 0.01 systematic effect on signal acceptance
- Electron ID efficiency (Z')
  - statistical error of Z→e+e- sample: 0.8%
  - energy scale : 3.7%
- Event vertex cut : 0.5% ( Willis )



### Cross section Limit



 $M_{LO} > 166 \text{ GeV } @ 95\% \text{ CL}$ 



### Conclusions

- A preliminary 95% CL cross section lower limit as a function of  $M_{LQ}$ , for leptoquarks decaying with 100% branching ratio into eq ( $\beta = 0.5$ ) has been set.
- Comparing it to the NLO theoretical predictions for leptoquark pairs production at the TeVatron, an upper limit on the Leptoquark mass is obtained at

$$m_{LO} > 166 \text{ GeV/c}^2$$